43 research outputs found

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    Optimal offering strategy for a concentrating solar power plant

    No full text
    This paper provides a methodology to build offering curves for a concentrating solar power plant. This methodology takes into account the uncertainty in the thermal production from the solar field and the volatility of market prices. The solar plant owner is a price-taker producer that participates in a pool-based electricity market with the aim of maximizing its expected profit. To enhance the value of the concentrating solar power plant, a molten salt heat storage is considered, which allows producing electricity during periods without availability of the solar resource. To derive offering curves, a mixed-integer linear programming model is proposed, which is robust from the point of view of the uncertainty associated with the thermal production of the solar field and stochastic from the point of view of the uncertain market prices. © 2012

    A new approach to optimal location and sizing of DSTATCOM in radial distribution networks using bio-inspired cuckoo search algorithm

    No full text
    This article proposes a new approach based on a bio-inspired Cuckoo Search Algorithm (CSA) that can significantly envisage with several issues for optimal allocation of distribution static compensator (DSTATCOM) in Radial Distribution System (RDS). In the proposed method, optimal locations of the DSTATCOM are calculated by using the Loss Sensitivity Factor (LSF). The optimal size of the DSTATCOM is simulated by using the newly developed CSA. In the proposed method, load flow calculations are performed by using a fast and efficient backward/forward sweep algorithm. Here, the mathematically formed objective function of the proposed method is to reduce the total system power losses. Standard 33-bus and 69-bus systems have been used to show the effectiveness of the proposed CSA-based optimization method in the RDS with different load models. The simulated results confirm that the optimal allocation of DSTATCOM plays a significant role in power loss minimization and enhanced voltage profile. The placement of DSTATCOM in RDS also plan an important role for minimizing uncertainties in the distribution level. The proposed method encourages one to use renewable-based resources, which results in affordable and clean energy
    corecore